HQ design and analysis

Paolo Ferracin

LARP Collaboration Meeting Napa Valley, CA April 8-10, 2009

Outline

- Magnet design
- Magnetic analysis
 - Conductor peak field
 - Magnet parameters
 - Field quality and saturation effect
- Mechanical analysis
 - Pre-load conditions
 - Coil and structure stress
- Conclusions

Cable and coil design

Cable

- 35 strands

- Width: 15.150 mm

- Mid-thickness: 1.437 mm

Keystone angle: 0.750

Insulation thick.: 0.1 mm

Coil

- Aperture: 120 mm

– 4 blocks

— 46 turns

Magnet design Cross-section

- Aluminum shell
 - 25 mm thick
 - OD = 570 mm
- 4-split iron yoke
- Bolted iron pads
 - Gaps for coil end support and cooling channels
- Iron masters
 - 2 bladders 50 mm wide
 - 2 interference keys
- Bolted aluminum collars for azimuthal alignment
- G10 sheet between coil and collars

Magnet design 3D components

- Yoke laminations, 50 mm thick with tie rods
- Iron pad laminations, 50 mm thick tie rods
- Collar laminations, 50 mm thick with tie rods
- Iron masters
 - Easy insertion and removal of coil pack (large clearance)
 - Continuous surface
 - Pad-yoke alignment
 - Improved tolerances

Magnet design Axial support

- Stainless steel (Nitronic 40) end plate
 - 50 mm thick
- Aluminum axial rods
 - 34 mm diameter
- Axial pre-load provided by additional plate and piston
 - Piston actuated to spread apart the two end plates
 - Nuts to lock the precompression

Magnet design Alignment

- Pins shell yoke
- Master keys pad yoke
 - Trapezoidal shape
 - Interference keys
 - Alignment keys
- Pad Collar
- Collar coil
 - Alignment keys
 - Under compression from assembly to excitation

Magnet design From TQS to HQ

2D magnetic analysis Conductor peak field and magnet parameters

J_c of 3000 A/mm²
(4.2 K, 12 T)

 About 0.7 T difference between layer 1 and layer 2

			Layer 1	Layer 2	
Temp.	Current	Grad.	Peak field	Peak field	Stored energy
K	kA	T/m	Т	Т	kJ/m
4.4	17.73	199	13.90	13.24	1174
1.9	19.45	219	15.17	14.45	1405

2D magnetic analysis Iron saturation and field quality

- $R_{ref} = 40 \text{ mm}$
- At 120 T/m
 - All allowed harmonics below 0.5 units
- Saturation effect
 - $-b_6 \pm 1$ unit from 0 to 20 kA

3D magnetic analysis Conductor peak field

 Peak field in the end located on pole turn, layer 2

Stainless steel pad over ends

 About 1% lower peak field in the end with respect to straight section

2D mechanical analysis Parameters and model

- Computational steps
 - Bladder pressurization
 - Key insertion
 - Cool-down
 - Excitation
- Impregnated coil surfaces: bonded
- All other surfaces: 0.2 friction factor
- Contact pressure (or tension <20 MPa) between pole and coil
- Two gradient considered
 - 219 T/m: limit conditions
 - 180 T/m: coil peak stress <150 MPa

	Grad	T/m	180	219
Layer 1	Fx	N/mm	+2187	+3234
	Fy	N/mm	-1243	-1853
	Fr	N/mm	+1620	+2389
	Ft	N/mm	-1753	-2609
Layer 2	Fx	N/mm	+76	+18
	Fy	N/mm	-2103	-3131
	Fr	N/mm	-724	-1171
	Ft	N/mm	-2097	-3100

2D mechanical analysis Bladder pressure and shell tension

- Pre-loading for 180 T/m
 - Bladder pressure: 23 MPa
 - Key interference: 0.3 mm
 - Shell tension:

- Pre-loading for 219 T/m
 - Bladder pressure: 46 MPa
 - Key interference: 0.6 mm
 - Shell tension:

2D mechanical analysis Coil peak stress after cool-down

- - Coil peak stress: 150 MPa
 - Pole area, inner radius, layer 1
- Pre-loading for 180 T/m Pre-loading for 219 T/m
 - Coil peak stress: 192 MPa
 - Pole area, inner radius, layer 1

2D mechanical analysis Coil peak stress with e.m. forces

- - Coil peak stress: 144 MPa
 - Mid-plane, inner radius, layer 1
- Pre-loading for 180 T/m Pre-loading for 219 T/m
 - Coil peak stress: 193 MPa
 - Mid-plane, inner radius, layer 1

Paolo Ferracin 15 04/07/2009

3D mechanical analysis Parameters and model

- Computational steps
 - Bladder pressurization
 - Key insertion
 - Cool-down
 - Excitation
- Impregnated coil surfaces: bonded
- All other surfaces: 0.2 friction factor
- Contact pressure between pole and coil

Comparison 2D-3D models

Paolo Ferracin 04/07/2009 17

3D mechanical analysis Aluminum rod tension and coil-pole

- Pre-loading for 219 T/m
 - E.m. force: 1372 kN
 - 620 kN applied at 4.2 K
 - <20 MPa tension at 219 T/m</p>

3D mechanical analysis Alignment key collar-coil

Contact between collar and alignment key

Conclusions

- HQ is a field quality quadrupole with a 120 mm bore and an expected maximum gradient
 - 199 T/m at 4.4 K and 219 T/m at 1.9 K
- The shell structure is based on the experience from TQS and LQS
 - Maintains the coil in contact with the pole in the straight section and in the end region up to short sample
 - Provides alignment to coil and structural components
- The coil peak stress can be maintained below 150 MPa with a pre-load for 180 T/m

